Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Thermodynamic prediction and experimental verification of optimal conditions for the growth of CuGa0.3In0.7Se2 thin films using close spaced vapor transport technique

Identifieur interne : 001342 ( Main/Repository ); précédent : 001341; suivant : 001343

Thermodynamic prediction and experimental verification of optimal conditions for the growth of CuGa0.3In0.7Se2 thin films using close spaced vapor transport technique

Auteurs : RBID : Pascal:12-0238055

Descripteurs français

English descriptors

Abstract

The aim of this work is to predict optimal conditions for growing good quality crystalline thin films using close spaced vapor transport (CSVT) technique. A thermodynamic model was developed and tested for the Cu-Ga-In-Se-I system to describe the deposition of CuGa0.3In0.7Se2 (CIGS). We considered a multiphase mixture containing 48 chemical compounds derived from the combination of the simple elements Cu, Ga, In, Se and I. The minimization of the Gibbs energy of the system was performed to calculate the composition of the mixture at the equilibrium state. In this way, the solid phase composition with possible impurities was predicted for various source temperature (Ts) and iodine pressure (P12). The conditions of stoichiometric and quasi-stoichiometric deposition are from 400 to 600 °C for Ts and from 30 Pa to 14 kPa for P12. These optimal conditions were tested experimentally at 475 °C, 500 °C, 525 °C and 550 °C. The elaborated CIGS thin films were of good quality as revealed by X-ray diffraction and scanning electron microscopy. The experimental results proved that the thermodynamic model is a helpful tool for the prediction of the optimal conditions in the CSVT process. .

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:12-0238055

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Thermodynamic prediction and experimental verification of optimal conditions for the growth of CuGa
<sub>0.3</sub>
In
<sub>0.7</sub>
Se
<sub>2</sub>
thin films using close spaced vapor transport technique</title>
<author>
<name sortKey="Abounachit, O" uniqKey="Abounachit O">O. Abounachit</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>LP2M2E, BP 549 Faculté des Sciences et Techniques, Université Cadi Ayyad</s1>
<s2>Gueliz, Marrakech</s2>
<s3>MAR</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>Maroc</country>
<wicri:noRegion>Gueliz, Marrakech</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Chehouani, H" uniqKey="Chehouani H">H. Chehouani</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>LP2M2E, BP 549 Faculté des Sciences et Techniques, Université Cadi Ayyad</s1>
<s2>Gueliz, Marrakech</s2>
<s3>MAR</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>Maroc</country>
<wicri:noRegion>Gueliz, Marrakech</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Djessas, K" uniqKey="Djessas K">K. Djessas</name>
<affiliation wicri:level="3">
<inist:fA14 i1="02">
<s1>CNRS-PROMES Tecnosud, Rambla de la Thermodynamique</s1>
<s2>66100, Perpignan</s2>
<s3>FRA</s3>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>France</country>
<placeName>
<region type="region" nuts="2">Languedoc-Roussillon</region>
<settlement type="city">Perpignan</settlement>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">12-0238055</idno>
<date when="2012">2012</date>
<idno type="stanalyst">PASCAL 12-0238055 INIST</idno>
<idno type="RBID">Pascal:12-0238055</idno>
<idno type="wicri:Area/Main/Corpus">001D04</idno>
<idno type="wicri:Area/Main/Repository">001342</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0040-6090</idno>
<title level="j" type="abbreviated">Thin solid films</title>
<title level="j" type="main">Thin solid films</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Copper</term>
<term>Copper selenides</term>
<term>Experimental result</term>
<term>Gallium</term>
<term>Gallium selenides</term>
<term>Indium selenides</term>
<term>Iodine</term>
<term>Modelling</term>
<term>Operating conditions</term>
<term>Phase composition</term>
<term>Scanning electron microscopy</term>
<term>Temperature dependence</term>
<term>Theoretical study</term>
<term>Thermodynamic model</term>
<term>Thin films</term>
<term>Vapor deposition</term>
<term>XRD</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Condition opératoire</term>
<term>Couche mince</term>
<term>Dépôt phase vapeur</term>
<term>Modèle thermodynamique</term>
<term>Composition phase</term>
<term>Dépendance température</term>
<term>Iode</term>
<term>Diffraction RX</term>
<term>Microscopie électronique balayage</term>
<term>Résultat expérimental</term>
<term>Modélisation</term>
<term>Etude théorique</term>
<term>Cuivre</term>
<term>Gallium</term>
<term>Séléniure de cuivre</term>
<term>Séléniure de gallium</term>
<term>Séléniure d'indium</term>
<term>I</term>
<term>8115K</term>
<term>6855N</term>
<term>6855J</term>
</keywords>
<keywords scheme="Wicri" type="concept" xml:lang="fr">
<term>Iode</term>
<term>Cuivre</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The aim of this work is to predict optimal conditions for growing good quality crystalline thin films using close spaced vapor transport (CSVT) technique. A thermodynamic model was developed and tested for the Cu-Ga-In-Se-I system to describe the deposition of CuGa
<sub>0.3</sub>
In
<sub>0.7</sub>
Se
<sub>2</sub>
(CIGS). We considered a multiphase mixture containing 48 chemical compounds derived from the combination of the simple elements Cu, Ga, In, Se and I. The minimization of the Gibbs energy of the system was performed to calculate the composition of the mixture at the equilibrium state. In this way, the solid phase composition with possible impurities was predicted for various source temperature (T
<sub>s</sub>
) and iodine pressure (P
<sub>12</sub>
). The conditions of stoichiometric and quasi-stoichiometric deposition are from 400 to 600 °C for T
<sub>s</sub>
and from 30 Pa to 14 kPa for P
<sub>12</sub>
. These optimal conditions were tested experimentally at 475 °C, 500 °C, 525 °C and 550 °C. The elaborated CIGS thin films were of good quality as revealed by X-ray diffraction and scanning electron microscopy. The experimental results proved that the thermodynamic model is a helpful tool for the prediction of the optimal conditions in the CSVT process. .</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0040-6090</s0>
</fA01>
<fA02 i1="01">
<s0>THSFAP</s0>
</fA02>
<fA03 i2="1">
<s0>Thin solid films</s0>
</fA03>
<fA05>
<s2>520</s2>
</fA05>
<fA06>
<s2>15</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Thermodynamic prediction and experimental verification of optimal conditions for the growth of CuGa
<sub>0.3</sub>
In
<sub>0.7</sub>
Se
<sub>2</sub>
thin films using close spaced vapor transport technique</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>ABOUNACHIT (O.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>CHEHOUANI (H.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>DJESSAS (K.)</s1>
</fA11>
<fA14 i1="01">
<s1>LP2M2E, BP 549 Faculté des Sciences et Techniques, Université Cadi Ayyad</s1>
<s2>Gueliz, Marrakech</s2>
<s3>MAR</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>CNRS-PROMES Tecnosud, Rambla de la Thermodynamique</s1>
<s2>66100, Perpignan</s2>
<s3>FRA</s3>
<sZ>3 aut.</sZ>
</fA14>
<fA20>
<s1>4841-4847</s1>
</fA20>
<fA21>
<s1>2012</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>13597</s2>
<s5>354000506996450040</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2012 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>23 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>12-0238055</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Thin solid films</s0>
</fA64>
<fA66 i1="01">
<s0>NLD</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>The aim of this work is to predict optimal conditions for growing good quality crystalline thin films using close spaced vapor transport (CSVT) technique. A thermodynamic model was developed and tested for the Cu-Ga-In-Se-I system to describe the deposition of CuGa
<sub>0.3</sub>
In
<sub>0.7</sub>
Se
<sub>2</sub>
(CIGS). We considered a multiphase mixture containing 48 chemical compounds derived from the combination of the simple elements Cu, Ga, In, Se and I. The minimization of the Gibbs energy of the system was performed to calculate the composition of the mixture at the equilibrium state. In this way, the solid phase composition with possible impurities was predicted for various source temperature (T
<sub>s</sub>
) and iodine pressure (P
<sub>12</sub>
). The conditions of stoichiometric and quasi-stoichiometric deposition are from 400 to 600 °C for T
<sub>s</sub>
and from 30 Pa to 14 kPa for P
<sub>12</sub>
. These optimal conditions were tested experimentally at 475 °C, 500 °C, 525 °C and 550 °C. The elaborated CIGS thin films were of good quality as revealed by X-ray diffraction and scanning electron microscopy. The experimental results proved that the thermodynamic model is a helpful tool for the prediction of the optimal conditions in the CSVT process. .</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B80A15K</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B60H55N</s0>
</fC02>
<fC02 i1="03" i2="3">
<s0>001B60H55J</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Condition opératoire</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Operating conditions</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Condición operatoria</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Couche mince</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Thin films</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Dépôt phase vapeur</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Vapor deposition</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Modèle thermodynamique</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Thermodynamic model</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Composition phase</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Phase composition</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Composición fase</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Dépendance température</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Temperature dependence</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Iode</s0>
<s2>NC</s2>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Iodine</s0>
<s2>NC</s2>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Diffraction RX</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>XRD</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Microscopie électronique balayage</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Scanning electron microscopy</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Résultat expérimental</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Experimental result</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Resultado experimental</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Modélisation</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Modelling</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Etude théorique</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Theoretical study</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Cuivre</s0>
<s2>NC</s2>
<s5>15</s5>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>Copper</s0>
<s2>NC</s2>
<s5>15</s5>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Gallium</s0>
<s2>NC</s2>
<s5>16</s5>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>Gallium</s0>
<s2>NC</s2>
<s5>16</s5>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>Séléniure de cuivre</s0>
<s2>NK</s2>
<s5>17</s5>
</fC03>
<fC03 i1="15" i2="3" l="ENG">
<s0>Copper selenides</s0>
<s2>NK</s2>
<s5>17</s5>
</fC03>
<fC03 i1="16" i2="3" l="FRE">
<s0>Séléniure de gallium</s0>
<s2>NK</s2>
<s5>18</s5>
</fC03>
<fC03 i1="16" i2="3" l="ENG">
<s0>Gallium selenides</s0>
<s2>NK</s2>
<s5>18</s5>
</fC03>
<fC03 i1="17" i2="3" l="FRE">
<s0>Séléniure d'indium</s0>
<s2>NK</s2>
<s5>19</s5>
</fC03>
<fC03 i1="17" i2="3" l="ENG">
<s0>Indium selenides</s0>
<s2>NK</s2>
<s5>19</s5>
</fC03>
<fC03 i1="18" i2="3" l="FRE">
<s0>I</s0>
<s4>INC</s4>
<s5>46</s5>
</fC03>
<fC03 i1="19" i2="3" l="FRE">
<s0>8115K</s0>
<s4>INC</s4>
<s5>71</s5>
</fC03>
<fC03 i1="20" i2="3" l="FRE">
<s0>6855N</s0>
<s4>INC</s4>
<s5>72</s5>
</fC03>
<fC03 i1="21" i2="3" l="FRE">
<s0>6855J</s0>
<s4>INC</s4>
<s5>73</s5>
</fC03>
<fN21>
<s1>184</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001342 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 001342 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:12-0238055
   |texte=   Thermodynamic prediction and experimental verification of optimal conditions for the growth of CuGa0.3In0.7Se2 thin films using close spaced vapor transport technique
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024